Web Results
Content Results
  • Methane functionalization


    Methane functionalization is the process of converting methane in its gaseous state to another molecule with a functional group, typically methanol or acetic acid, through the use of transition metal catalysts. In the realm of carbon-hydrogen bond activation and functionalization (C-H activation/functionalization), many recent efforts have been made in order to catalytically functionalize the C-H bonds in methane. The large abundance of methane in natural gas or shale gas deposits presents a large potential for its use as a feedstock in modern chemistry. However, given its gaseous natural state, it is quite difficult to transport economically. Its ideal use would be as a raw starting material for methanol or acetic acid synthesis, with plants built at the source to eliminate the issue of transportation. Methanol, in particular, would be of great use as a potential fuel source, and many efforts have been applied to researching the feasibilities of a methanol economy. The challenges of C-H activation and functionalization present themselves when several factors are taken into consideration.

  • RNA activation


    RNA activation (RNAa) is a small RNA-guided and Argonaute (Ago)-dependent gene regulation phenomenon in which promoter-targeted short double-stranded RNAs (dsRNAs) induce target gene expression at the transcriptional/epigenetic level. RNAa was first reported in a 2006 PNAS paper by Li et al. who also coined the term "RNAa" as a contrast to RNA interference (RNAi) to describe such gene activation phenomenon. dsRNAs that trigger RNAa have been termed small activating RNA (saRNA). Since the initial discovery of RNAa in human cells, many other groups have made similar observations in different mammalian species including human, non-human primates, rat and mice, plant and C. elegans, suggesting that RNAa is an evolutionarily conserved mechanism of gene regulation. RNAa can be generally classified into two categories: exogenous and endogenous. Exogenous RNAa is triggered by artificially designed saRNAs which target non-coding sequences such as the promoter and the 3’ terminus of a gene and these saRNAs can be chemically synthesized or expressed as short hairpin RNA (shRNA).

  • Activated carbon


    Activated carbonActivated carbon, also called activated charcoal, is a form of carbon processed to have small, low-volume pores that increase the surface area available for adsorption or chemical reactions. Activated is sometimes substituted with active. Due to its high degree of microporosity, one gram of activated carbon has a surface area in excess of as determined by gas adsorption. An activation level sufficient for useful application may be obtained solely from high surface area. Further chemical treatment often enhances adsorption properties. Activated carbon is usually derived from charcoal and is sometimes used as biochar. When derived from coal or corn it is referred to as activated coal. Activated coke is derived from coke. 1. Uses ------- Activated carbon is used in methane and hydrogen storage, air purification, decaffeination, gold purification, metal extraction, water purification, medicine, sewage treatment, air filters in gas masks and respirators, filters in compressed air, teeth whitening, and many other applications. 1.1. Industrial application --------------------------- One major industrial application involves use of activated carbon in metal finishing for purification of electroplating solutions. For example, it is a main purification technique for removing organic impurities from bright nickel plating solutions. A variety of organic chemicals are added to plating solutions for improving their deposit qualities and for enhancing properties like brightness, smoothness, ductility, etc. Due to passage of direct current and electrolytic reactions of anodic oxidation and cathodic reduction, organic additives generate unwanted breakdown products in solution. Their excessive build up can adversely affect plating quality and physical properties of deposited metal. Activated carbon treatment removes such impurities and restores plating performance to the desired level. 1.2. Medical uses ----------------- Activated charcoal for medical use Activated carbon is used to treat poisonings and overdoses following oral ingestion. Tablets or capsules of activated carbon are used in many countries as an over-the-counter drug to treat diarrhea, indigestion, and flatulence. However, it is ineffective for a number of poisonings including strong acids or alkali, cyanide, iron, lithium, arsenic, methanol, ethanol or ethylene glycol. Incorrect application (e.g. into the lungs) results in pulmonary aspiration, which can sometimes be fatal if immediate medical treatment is not initiated. 1.3. Analytical chemistry applications -------------------------------------- Activated carbon, in 50% w/w combination with celite, is used as stationary phase in low-pressure chromatographic separation of carbohydrates (mono-, di-trisaccharides) using ethanol solutions (5–50%) as mobile phase in analytical or preparative protocols. 1.4. Environmental applications ------------------------------- Activated carbon is usually used in water filtration systems. In this illustration, the activated carbon is in the fourth level (counted from bottom). Carbon adsorption has numerous applications in removing pollutants from air or water streams both in the field and in industrial processes such as: Spill cleanup Groundwater remediation Drinking water filtration Air purification Volatile organic compounds capture from painting, dry cleaning, gasoline dispensing operations, and other processes.During early implementation of the 1974 Safe Drinking Water Act in the US, EPA officials developed a rule that proposed requiring drinking water treatment systems to use granular activated carbon. Because of its high cost, the so-called GAC rule encountered strong opposition across the country from the water supply industry, including the largest water utilities in California. Hence, the agency set aside the rule. Activated carbon filtration is an effective water treatment method due to its multi-functional nature. There are specific types of activated carbon filtration methods and equipment that are indicated – depending upon the contaminants involved. Activated carbon is also used for the measurement of radon concentration in air. 1.5. Agriculture uses --------------------- Activated carbon (charcoal) is an allowed substance used by organic farmers in both livestock production and wine making. In livestock production it is used as a pesticide, animal feed additive, processing aid, nonagricultural ingredient and disinfectant. In organic winemaking, activated carbon is allowed for use as a processing agent to adsorb brown color pigments from white grape concentrates. 1.6. Distilled alcoholic beverage purification ---------------------------------------------- Activated carbon filters (AC filters) can be used to filter vodka and whiskey of organic impurities which can affect color, taste, and odor. Passing an organically impure vodka through an activated carbon filter at the proper flow rate will result in vodka with an identical alcohol content and significantly increased organic purity, as judged by odor and taste. 1.7. Fuel storage ----------------- Research is being done testing various activated carbons' ability to store natural gas and hydrogen gas. The porous material acts like a sponge for different types of gases. The gas is attracted to the carbon material via Van der Waals forces. Some carbons have been able to achieve bonding energies of 5–10 kJ per mol. The gas may then be desorbed when subjected to higher temperatures and either combusted to do work or in the case of hydrogen gas extracted for use in a hydrogen fuel cell. Gas storage in activated carbons is an appealing gas storage method because the gas can be stored in a low pressure, low mass, low volume environment that would be much more feasible than bulky on-board pressure tanks in vehicles. The United States Department of Energy has specified certain goals to be achieved in the area of research and development of nano-porous carbon materials. All of the goals are yet to be satisfied but numerous institutions, including the ALL-CRAFT program, are continuing to conduct work in this promising field. 1.8. Gas purification --------------------- Filters with activated carbon are usually used in compressed air and gas purification to remove oil vapors, odor, and other hydrocarbons from the air. The most common designs use a 1-stage or 2 stage filtration principle in which activated carbon is embedded inside the filter media. Activated carbon filters are used to retain radioactive gases within the air vacuumed from a nuclear boiling water reactor turbine condenser. The large charcoal beds adsorb these gases and retain them while they rapidly decay to non-radioactive solid species. The solids are trapped in the charcoal particles, while the filtered air passes through. 1.9. Chemical purification -------------------------- Activated carbon is commonly used on the laboratory scale to purify solutions of organic molecules containing unwanted colored organic impurities. Filtration over activated carbon is used in large scale fine chemical and pharmaceutical processes for the same purpose. The carbon is either mixed with the solution then filtered off or immobilized in a filter. 1.10. Mercury scrubbing ----------------------- Activated carbon, often infused with sulfur or iodine, is widely used to trap mercury emissions from coal-fired power stations, medical incinerators, and from natural gas at the wellhead. This carbon is a special product costing more than US$4.00 per kg. Since it is often not recycled, the mercury-laden activated carbon presents a disposal dilemma. If the activated carbon contains less than 260 ppm mercury, United States federal regulations allow it to be stabilized (for example, trapped in concrete) for landfilling. However, waste containing greater than 260 ppm is considered to be in the high-mercury subcategory and is banned from landfilling (Land-Ban Rule). This material is now accumulating in warehouses and in deep abandoned mines at an estimated rate of 100 tons per year. The problem of disposal of mercury-laden activated carbon is not unique to the United States. In the Netherlands, this mercury is largely recovered and the activated carbon is disposed of by complete burning.

Map Box 1