Web Results
Content Results
  • Erosion (morphology)

    serch.it?q=Erosion-(morphology)

    The erosion of the dark-blue square by a disk, resulting in the light-blue square.Erosion (usually represented by ⊖) is one of two fundamental operations (the other being dilation) in morphological image processing from which all other morphological operations are based. It was originally defined for binary images, later being extended to grayscale images, and subsequently to complete lattices.

  • HD 219134 b

    serch.it?q=HD-219134-b

    HD 219134 b (or HR 8832 b) is one of at least five exoplanets orbiting HR 8832, a main-sequence star in the constellation of Cassiopeia. As of July 2015, super-Earth HD 219134 b, with a size of about 1.6 , and a density of 6.4 g/cm3, was reported as the closest rocky exoplanet to the Earth, at 21.25 light-years away. The exoplanet was initially detected by the instrument HARPS-N of the Italian Telescopio Nazionale Galileo via the radial velocity method and subsequently observed by the Spitzer telescope as transiting in front of its star. The exoplanet has a mass of about 4.5 times that of Earth and orbits its host star every three days. In 2017, it was found that the planet likely hosts an atmosphere.

  • Proxima Centauri b

    serch.it?q=Proxima-Centauri-b

    Proxima Centauri b (also called Proxima b or Alpha Centauri Cb) is an exoplanet orbiting in the habitable zone of the red dwarf star Proxima Centauri, which is the closest star to the Sun and part of a triple star system. It is located about 4.2 light-years (1.3 parsecs, 40 trillion km, or 25 trillion miles) from Earth in the constellation of Centaurus, making it the closest known exoplanet to the Solar System. Proxima Centauri b orbits the star at a distance of roughly with an orbital period of approximately 11.2 Earth days, and has an estimated mass of at least 1.3 times that of the Earth. Its habitability has not been established, though it is unlikely to be habitable since the planet is subject to stellar wind pressures of more than 2,000 times those experienced by Earth from the solar wind. The discovery of the planet was announced in August 2016 by the European Southern Observatory. The planet was found using the radial velocity method, where periodic Doppler shifts of spectral lines of the host star suggest an orbiting object. From these readings, the radial velocity of the parent star relative to the Earth is varying with an amplitude of about 1.4 metres (4.5 feet) per second. According to Guillem Anglada‐Escudé, its proximity to Earth offers an opportunity for robotic exploration of the planet with the Starshot project or, at least, "in the coming centuries". Without the inclination of its orbit known, the exact mass of Proxima Centauri b is unknown. If its orbit is nearly edge-on, it would have a mass of Earth masses. Statistically, there is a roughly 90% chance that the planet's mass is less than Earth masses.

Map Box 1