Web Results
Content Results
  • Oral rehydration therapy

    serch.it?q=Oral-rehydration-therapy

    Oral rehydration therapy (ORT) is a type of fluid replacement used to prevent and treat dehydration, especially that due to diarrhea. It involves drinking water with modest amounts of sugar and salts, specifically sodium and potassium. Oral rehydration therapy can also be given by a nasogastric tube. Therapy should routinely include the use of zinc supplements. Use of oral rehydration therapy decreases the risk of death from diarrhea by about 93%. Side effects may include vomiting, high blood sodium, or high blood potassium. If vomiting occurs, it is recommended that use be paused for 10 minutes and then gradually restarted. The recommended formulation includes sodium chloride, sodium citrate, potassium chloride, and glucose. Glucose may be replaced by sucrose and sodium citrate may be replaced by sodium bicarbonate, if not available. It works as glucose increases the uptake of sodium and thus water by the intestines. A number of other formulations are also available including versions that can be made at home. However, the use of homemade solutions has not been well studied. Oral rehydration therapy was developed in the 1940s, but did not come into common use until the 1970s. Oral rehydration solution is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. The wholesale cost in the developing world of a package to mix with a liter of water is 0.03 to US$0.20. Globally as of 2015 oral rehydration therapy is used by 41% of children with diarrhea. This use has played an important role in reducing the number of deaths in children under the age of five.

  • Hypernatremia

    serch.it?q=Hypernatremia

    Hypernatremia, also spelled hypernatraemia, is a high concentration of sodium in the blood. Early symptoms may include a strong feeling of thirst, weakness, nausea, and loss of appetite. Severe symptoms include confusion, muscle twitching, and bleeding in or around the brain. Normal serum sodium levels are 135 – 145 mmol/L (135 – 145 mEq/L). Hypernatremia is generally defined as a serum sodium level of more than 145 mmol/L. Severe symptoms typically only occur when levels are above 160 mmol/L. Hypernatremia is typically classified by a person's fluid status into low volume, normal volume, and high volume. Low volume hypernatremia can occur from sweating, vomiting, diarrhea, diuretic medication, or kidney disease. Normal volume hypernatremia can be due to fever, inappropriately decreased thirst, prolonged increased breath rate, diabetes insipidus, and from lithium among other causes. High volume hypernatremia can be due to hyperaldosteronism, excessive administration of intravenous 3% normal saline or sodium bicarbonate, or rarely from eating too much salt. Low blood protein levels can result in a falsely high sodium measurement. The cause can usually be determined by the history of events. Testing the urine can help if the cause is unclear. The underlying mechanism typically involves too little free water in the body. If the onset of hypernatremia was over a few hours, then it can be corrected relatively quickly using intravenous normal saline and 5% dextrose in water. Otherwise, correction should occur slowly with, for those unable to drink water, half-normal saline. Hypernatremia due to diabetes insipidus as a result of a brain disorder, may be treated with the medication desmopressin. If the diabetes insipidus is due to kidney problems the medication causing the problem may need to be stopped or the underlying electrolyte disturbance corrected. Hypernatremia affects 0.3–1% of people in hospital. It most often occurs in babies, those with impaired mental status, and the elderly. Hypernatremia is associated with an increased risk of death but it is unclear if it is the cause.

  • Electrolyte

    serch.it?q=Electrolyte

    An electrolyte is a substance that produces an electrically conducting solution when dissolved in a polar solvent, such as water. The dissolved electrolyte separates into cations and anions, which disperse uniformly through the solvent. Electrically, such a solution is neutral. If an electric potential is applied to such a solution, the cations of the solution are drawn to the electrode that has an abundance of electrons, while the anions are drawn to the electrode that has a deficit of electrons. The movement of anions and cations in opposite directions within the solution amounts to a current. This includes most soluble salts, acids, and bases. Some gases, such as hydrogen chloride, under conditions of high temperature or low pressure can also function as electrolytes. Electrolyte solutions can also result from the dissolution of some biological (e.g., DNA, polypeptides) and synthetic polymers (e.g., polystyrene sulfonate), termed "polyelectrolytes", which contain charged functional groups. A substance that dissociates into ions in solution acquires the capacity to conduct electricity. Sodium, potassium, chloride, calcium, magnesium, and phosphate are examples of electrolytes. In medicine, electrolyte replacement is needed when a person has prolonged vomiting or diarrhea, and as a response to strenuous athletic activity. Commercial electrolyte solutions are available, particularly for sick children (such as oral rehydration solution, Suero Oral, or Pedialyte) and athletes (sports drinks). Electrolyte monitoring is important in the treatment of anorexia and bulimia.

Map Box 1