Web Results
Content Results
  • Dead zone (ecology)


    Red circles show the location and size of many dead zones.Black dots show dead zones of unknown size.The size and number of marine dead zones—areas where the deep water is so low in dissolved oxygen that sea creatures can't survive—have grown explosively in the past half-century. – NASA Earth Observatory (2008)Dead zones are hypoxic (low-oxygen) areas in the world's oceans and large lakes, caused by "excessive nutrient pollution from human activities coupled with other factors that deplete the oxygen required to support most marine life in bottom and near-bottom water. (NOAA)". Historically, many of these sites were naturally occurring. However, in the 1970s, oceanographers began noting increased instances and expanses of dead zones. These occur near inhabited coastlines, where aquatic life is most concentrated. (The vast middle portions of the oceans, which naturally have little life, are not considered "dead zones".) Dead zones are bodies of water that do not have sufficient oxygen (3) levels in order to support most marine life. Dead zones are caused by oxygen-depleting factors which include, but are not limited to, human pollution (4). This is a process called eutrophication, where oxygen levels decrease as elements such nitrogen and phosphorus increase. A healthy river will have increased amounts of oxygen for consumption by organisms (1). As nitrogen increases, algae (5) produce large amounts of oxygen, but die from increased nitrogen. Decomposers then use all of the remaining oxygen decomposing the algae, resulting in no oxygen left and no oxygen being produced (2). In March 2004, when the recently established UN Environment Programme published its first Global Environment Outlook Year Book (GEO Year Book 2003), it reported 146 dead zones in the world's oceans where marine life could not be supported due to depleted oxygen levels. Some of these were as small as a square kilometre (0.4 mi²), but the largest dead zone covered 70,000 square kilometres (27,000 mi²). A 2008 study counted 405 dead zones worldwide.

  • Anoxic waters


    Anoxic waters are areas of sea water, fresh water, or groundwater that are depleted of dissolved oxygen and are a more severe condition of hypoxia. The US Geological Survey defines anoxic groundwater as those with dissolved oxygen concentration of less than 0.5 milligrams per litre. This condition is generally found in areas that have restricted water exchange. In most cases, oxygen is prevented from reaching the deeper levels by a physical barrier as well as by a pronounced density stratification, in which, for instance, heavier hypersaline waters rest at the bottom of a basin. Anoxic conditions will occur if the rate of oxidation of organic matter by bacteria is greater than the supply of dissolved oxygen. Anoxic waters are a natural phenomenon, and have occurred throughout geological history. In fact, some postulate that the Permian–Triassic extinction event, a mass extinction of species from world's oceans, resulted from widespread anoxic conditions. At present anoxic basins exist, for example, in the Baltic Sea, and elsewhere (see below).

  • Effects of high altitude on humans


    Climbing Mount Rainier. The effects of high altitude on humans are considerable. The percentage oxygen saturation of hemoglobin determines the content of oxygen in blood. After the human body reaches around 2,100 m (7,000 feet) above sea level, the saturation of oxyhemoglobin begins to decrease rapidly. However, the human body has both short-term and long-term adaptations to altitude that allow it to partially compensate for the lack of oxygen. There is a limit to the level of adaptation; mountaineers refer to the altitudes above as the "death zone", where it is generally believed that no human body can acclimatize.

Map Box 1